32 research outputs found

    Data-Efficient Contrastive Self-supervised Learning: Easy Examples Contribute the Most

    Full text link
    Self-supervised learning (SSL) learns high-quality representations from large pools of unlabeled training data. As datasets grow larger, it becomes crucial to identify the examples that contribute the most to learning such representations. This enables efficient SSL by reducing the volume of data required for learning high-quality representations. Nevertheless, quantifying the value of examples for SSL has remained an open question. In this work, we address this for the first time, by proving that examples that contribute the most to contrastive SSL are those that have the most similar augmentations to other examples, in expectation. We provide rigorous guarantees for the generalization performance of SSL on such subsets. Empirically, we discover, perhaps surprisingly, the subsets that contribute the most to SSL are those that contribute the least to supervised learning. Through extensive experiments, we show that our subsets outperform random subsets by more than 3% on CIFAR100, CIFAR10, and STL10. Interestingly, we also find that we can safely exclude 20% of examples from CIFAR100 and 40% from STL10, without affecting downstream task performance.Comment: Accepted to ICML 202

    Better Safe than Sorry: Pre-training CLIP against Targeted Data Poisoning and Backdoor Attacks

    Full text link
    Contrastive Language-Image Pre-training (CLIP) on large image-caption datasets has achieved remarkable success in zero-shot classification and enabled transferability to new domains. However, CLIP is extremely more vulnerable to targeted data poisoning and backdoor attacks, compared to supervised learning. Perhaps surprisingly, poisoning 0.0001% of CLIP pre-training data is enough to make targeted data poisoning attacks successful. This is four orders of magnitude smaller than what is required to poison supervised models. Despite this vulnerability, existing methods are very limited in defending CLIP models during pre-training. In this work, we propose a strong defense, SAFECLIP, to safely pre-train CLIP against targeted data poisoning and backdoor attacks. SAFECLIP warms up the model by applying unimodal contrastive learning (CL) on image and text modalities separately. Then, it carefully divides the data into safe and risky subsets. SAFECLIP trains on the risky data by applying unimodal CL to image and text modalities separately, and trains on the safe data using the CLIP loss. By gradually increasing the size of the safe subset during the training, SAFECLIP effectively breaks targeted data poisoning and backdoor attacks without harming the CLIP performance. Our extensive experiments show that SAFECLIP decrease the attack success rate of targeted data poisoning attacks from 93.75% to 0% and that of the backdoor attacks from 100% to 0%, without harming the CLIP performance on various datasets

    Adversarially Robust Submodular Maximization under Knapsack Constraints

    Full text link
    We propose the first adversarially robust algorithm for monotone submodular maximization under single and multiple knapsack constraints with scalable implementations in distributed and streaming settings. For a single knapsack constraint, our algorithm outputs a robust summary of almost optimal (up to polylogarithmic factors) size, from which a constant-factor approximation to the optimal solution can be constructed. For multiple knapsack constraints, our approximation is within a constant-factor of the best known non-robust solution. We evaluate the performance of our algorithms by comparison to natural robustifications of existing non-robust algorithms under two objectives: 1) dominating set for large social network graphs from Facebook and Twitter collected by the Stanford Network Analysis Project (SNAP), 2) movie recommendations on a dataset from MovieLens. Experimental results show that our algorithms give the best objective for a majority of the inputs and show strong performance even compared to offline algorithms that are given the set of removals in advance.Comment: To appear in KDD 201

    Towards Sustainable Learning: Coresets for Data-efficient Deep Learning

    Full text link
    To improve the efficiency and sustainability of learning deep models, we propose CREST, the first scalable framework with rigorous theoretical guarantees to identify the most valuable examples for training non-convex models, particularly deep networks. To guarantee convergence to a stationary point of a non-convex function, CREST models the non-convex loss as a series of quadratic functions and extracts a coreset for each quadratic sub-region. In addition, to ensure faster convergence of stochastic gradient methods such as (mini-batch) SGD, CREST iteratively extracts multiple mini-batch coresets from larger random subsets of training data, to ensure nearly-unbiased gradients with small variances. Finally, to further improve scalability and efficiency, CREST identifies and excludes the examples that are learned from the coreset selection pipeline. Our extensive experiments on several deep networks trained on vision and NLP datasets, including CIFAR-10, CIFAR-100, TinyImageNet, and SNLI, confirm that CREST speeds up training deep networks on very large datasets, by 1.7x to 2.5x with minimum loss in the performance. By analyzing the learning difficulty of the subsets selected by CREST, we show that deep models benefit the most by learning from subsets of increasing difficulty levels

    The Final Ascent: When Bigger Models Generalize Worse on Noisy-Labeled Data

    Full text link
    Increasing the size of overparameterized neural networks has been shown to improve their generalization performance. However, real-world datasets often contain a significant fraction of noisy labels, which can drastically harm the performance of the models trained on them. In this work, we study how neural networks' test loss changes with model size when the training set contains noisy labels. We show that under a sufficiently large noise-to-sample size ratio, generalization error eventually increases with model size. First, we provide a theoretical analysis on random feature regression and show that this phenomenon occurs as the variance of the generalization loss experiences a second ascent under large noise-to-sample size ratio. Then, we present extensive empirical evidence confirming that our theoretical results hold for neural networks. Furthermore, we empirically observe that the adverse effect of network size is more pronounced when robust training methods are employed to learn from noisy-labeled data. Our results have important practical implications: First, larger models should be employed with extra care, particularly when trained on smaller dataset or using robust learning methods. Second, a large sample size can alleviate the effect of noisy labels and allow larger models to achieve a superior performance even under noise.Comment: added more experiments and discussion on sample siz

    Lazier Than Lazy Greedy

    Full text link
    Is it possible to maximize a monotone submodular function faster than the widely used lazy greedy algorithm (also known as accelerated greedy), both in theory and practice? In this paper, we develop the first linear-time algorithm for maximizing a general monotone submodular function subject to a cardinality constraint. We show that our randomized algorithm, STOCHASTIC-GREEDY, can achieve a (1−1/e−ε)(1-1/e-\varepsilon) approximation guarantee, in expectation, to the optimum solution in time linear in the size of the data and independent of the cardinality constraint. We empirically demonstrate the effectiveness of our algorithm on submodular functions arising in data summarization, including training large-scale kernel methods, exemplar-based clustering, and sensor placement. We observe that STOCHASTIC-GREEDY practically achieves the same utility value as lazy greedy but runs much faster. More surprisingly, we observe that in many practical scenarios STOCHASTIC-GREEDY does not evaluate the whole fraction of data points even once and still achieves indistinguishable results compared to lazy greedy.Comment: In Proc. Conference on Artificial Intelligence (AAAI), 201
    corecore